Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available December 8, 2025
-
This study presents a mobile app that facilitates undergraduate students to learn data science through their own full body motions. Leveraging the built-in camera of a mobile device, the proposed app captures the user and feeds their images into an open-source computer-vision algorithm that localizes the key joint points of human body. As students can participate in the entire data collection process, the obtained motion data is context-rich and personally relevant to them. The app utilizes the collected motion data to explain various concepts and methods in data science under the context of human movements. The app also visualizes the geometric interpretation of data through various visual aids, such as interactive graphs and figures. In this study, we use principal component analysis, a commonly used dimensionality reduction method, as an example to demonstrate the proposed learning framework. Strategies to encompass other learning modules are also discussed for further improvement.more » « less
-
In recent years, there has been a trend to adopt human-robot collaboration (HRC) in the industry. In previous studies, computer vision-aided human pose reconstruction is applied to find the optimal position of point of operation in HRC that can reduce workers’ musculoskeletal disorder (MSD) risks due to awkward working postures. However, the reconstruction of human pose through computer-vision may fail due to the complexity of the workplace environment. In this study, we propose a data-driven method for optimizing the position of point of operation during HRC. A conditional variational auto-encoder (cVAE) model-based approach is adopted, which includes three steps. First, a cVAE model was trained using an open-access multimodal human posture dataset. After training, this model can output a simulated worker posture of which the hand position can reach a given position of point of operation. Next, an awkward posture score is calculated to evaluate MSD risks associated with the generated postures with a variety of positions of point of operation. The position of point of operation that is associated with a minimum awkward posture score is then selected for an HRC task. An experiment was conducted to validate the effectiveness of this method. According to the findings, the proposed method produced a point of operation position that was similar to the one chosen by participants through subjective selection, with an average difference of 4.5 cm.more » « less
-
Biomechanics examines different physical characteristics of the human body movement by applying principles of Newtonian mechanics to physical activities. Therefore, undergraduate biomechanics courses are highly demanding in mathematics and physics. While the inclusion of laboratory experiences can augment student comprehension of biomechanics concepts, the cost and the required expertise associated with motion tracking systems can be a burden of offering laboratory sessions. In this study, we developed a mobile platform app to facilitate learning human kinematics in biomechanics courses. An optimized computer-vision model that is based on convolutional pose machine (CPM), MobileNet V2 and TensorFlow Lite frameworks is adopted to reconstruct human pose first. A real-time human kinematics analysis then allows students to conduct human motion experiments. The proposed app can serve as a potential instructional tool in biomechanics courses.more » « less
An official website of the United States government
